Tài nguyên dạy học

Hỗ trợ trực tuyến

Điều tra ý kiến

Bạn thấy trang này như thế nào?
Đẹp
Đơn điệu
Bình thường
Ý kiến khác

Thống kê

  • truy cập   (chi tiết)
    trong hôm nay
  • lượt xem
    trong hôm nay
  • thành viên
  • Ảnh ngẫu nhiên

    Thành viên trực tuyến

    7 khách và 0 thành viên

    Chào mừng quý vị đến với website của Nguyễn Thiên Hương

    Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tài liệu của Thư viện về máy tính của mình.
    Nếu chưa đăng ký, hãy nhấn vào chữ ĐK thành viên ở phía bên trái, hoặc xem phim hướng dẫn tại đây
    Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay phía bên trái.

    ĐỀ CƯƠNG GIỮA KÌ I TOÁN 8-VINSCHOOL

    Nhấn vào đây để tải về
    Hiển thị toàn màn hình
    Báo tài liệu có sai sót
    Nhắn tin cho tác giả
    (Tài liệu chưa được thẩm định)
    Nguồn: Sưu tầm
    Người gửi: Nguyễn Thiên Hương (trang riêng)
    Ngày gửi: 19h:41' 14-10-2021
    Dung lượng: 90.9 KB
    Số lượt tải: 425
    Số lượt thích: 0 người
    TRƯỜNG VINSCHOOL
    PHIẾU ÔN TẬP GIỮA HỌC KÌ I
    MÔN TOÁN 8
    NĂM HỌC 2017 – 2018
    Họ tên: ……………………………………… Lớp: …………….
    I. ĐẠI SỐ
    * Lý thuyết
    1. Nhân đơn thức với đa thức, nhân đa thức với đa thức.
    2. Bảy hằng đẳng thức đáng nhớ.
    3. Phân tích đa thức thành nhân tử, chia đa thức một biến đã sắp xếp.
    *Bài tập
    Bài 1: Thực hiện phép tính
    a.  c. 
    b.  d. 
    Bài 2: Phân tích các đa thức sau thành nhân tử:
    a.  b.  c. 
    d.  e.  f. 
    g.  h.  i. 
    j.  k. 
    Bài 3: Tính nhanh giá trị biểu thức
    a.  tại 
    b.  tại 
    Bài 4: Thực hiện phép tính
    a.  d. 
    b.  e. 
    c.  f. 
    Bài 5: Tìm x.
    a.  b. 
    c.  d. 
    e.  f. 
    g.  h. 
    Bài 6: Tìm GTNN của biểu thức sau:
    a.  c. 
    b.  d. 
    Bài 7: Tìm GTLN của các biểu thức sau:
    a.  b.  c. 
    Bài 8: Cho . Chứng minh rằng: .
    Bài 9: Cho  và . Tính giá trị của biểu thức 

    B. HÌNH HỌC
    * Lý thuyết
    1. Đường trung bình của tam giac, đường trung bình hình thang;
    2. Định nghĩa, tính chất, dấu hiệu nhận biết các hình thang cân, hình bình hành, hình chữ nhật, hình thoi.
    3. Đối xứng trục, đối xứng tâm, tính chất trung tuyến ứng với cạnh huyền của tam giác vuông.
    * Bài tập
    Bài 1: Cho hình thang ABCD (AB // CD). Gọi M, N, P, Q theo thứ tự là trung điểm của AB, AC, CD, BD.
    a) Chứng minh rằng MNPQ là hình bình hành.
    b) Nếu ABCD là hình thang cân thì tứ giác MNPQ là hình gì? Vì sao?
    Bài 2: Cho hình bình hành ABCD có BC = 2AB và . Gọi E, F theo thứ tự là trung điểm của BC, AD.
    a) Chứng minh AE vuông góc với BF.
    b) Tứ giác ECDF là hình gì? Vì sao?
    c) Tứ giác ABED là hình gì? Vì sao?
    d) Gọi M là điểm đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.
    e) Chứng minh M, E, D thẳng hàng.
    Bài 3: Cho tam giác ABC vuông tại A có , kẻ tia Ax song song BC. Trên tia Ax lấy điểm D sao cho AD = DC.
    a) Tính các góc BAD và góc DAC
    b) Chứng minh tứ giác ABCD là hình thang cân
    c) Gọi E là trung điểm BC. Chứng minh ADEB là hình thoi.
    Bài 4: Cho  cân ở A. Gọi D, E, F lần lượt là trung điểm của BC, CA, AB.
    a) Chứng minh BCEF là hình thang cân, BDEF là hình bình hành.
    b) BE cắt CF ở G. Vẽ các điểm M, N sao cho E là trung điểm của GN, F là trung điểm của GM. Chứng minh BCNM là hình chữ nhật, AMGN là hình thoi.
    c) Chứng minh AMBN là hình thang. Nếu AMBN là hình thang cân thì  có thêm đặc điểm gì?
    Bài 5: Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD. Gọi M, N theo thứ tự là trung điểm của AH và DH.
    a) Chứng minh MN // AD;
    b) Gọi I là trung điểm của BC. Chứng minh tứ giác BMNI là hình bình hành;
    c) Tính .
    Bài 6: Cho  vuông tại A có trung tuyến AM, đường cao AH. N là điểm đối xứng của A qua tâm M.
    a) Chứng minh ACNB là hình chữ nhật;
    b) Trên đường thẳng qua A song song với BC lấy điểm D (D thuộc nửa mặt phẳng bờ AN không chứa B sao cho AD = BC. Chứng minh C là trung điểm DN.
    c) Vẽ  tại K, BK cắt AH tại I và
     
    Gửi ý kiến